

System operation

Scope left side: TL/IL switches on/off transmitted light, INT adjusts intensity

> Scope front: Epifluorescence filter selection, Shutter controls epifluorescence switch

> > Manual stage controls:

Focus -

X-Y positioning

Fine travel

Coarse travel

+0+

1

System switches: Turn buttons on left-toright and key on last, off in reverse order

Software boot up

Leica Application Suite Advanced Fluorescence 3.2.0.9652	MICROSYSTEMS from 10-3.lif
Configuration Microscope :	machine.xlhw \$ Selection Scan
Resonant : Apply Customized User Settings :	Image: Second se
Copyright 1997 - 2013 Leica Microsystems CMS GmbH	ок Cancel chan

Select FOV or resonant scanner at boot-up: resonant off to get FOV, must re-start software to change

Experiments		Acqui	sition
▼ Acquisition Me	ode		×
xyz ¢			
▼ XY: 8192x8192	400 Hz :	1.00 1.01 AU	*
Format :		8192 x 8192	÷ 🗘
Speed :		400 Hz	
Bidirectional X :		10	Hz OFF
Zoom Factor :		100 200	Hz 1.00
Zoom In :		400	HZ OFF
Image Size :		700	Hz
Pixel Size :		1000	Hz 2 nm
Optical Section :		7.28	3 µm 🕒
		Optimize X	Y Format

FOV size selection

FOV speed selection

leice — 0		/			TCS	SP8
Experiments			Acq	uisitio	n	
▼ Acquisition M	ode				*	
xyz 🗘					SEQ.	
▼ XY: 8192x8192	2 400 Hz	z 1.0	0 1.01 A	U	*	
Format :		8	192 x 81	92 🗘	\odot	
Speed :			10	5 x 16	O	
Bidirectional X :			64 128	4 X 64 X 128	OFF	
Zoom Factor :	-		256	x 256	1.00	
Zoom In :			512	2 x 32	0.55	
Image Size :			512	x 512	imm	
Divel Size :			1024	x 256	2 nm	
Ontical Section :			1024 1024 x	x 512 1024		
optical section.			2048 x	2048	B	
			4096 x	4096	nat	
Pixel Dwell Time:			8192 x	8192	J12/s	
Line Average : Line Accu :		÷	B	<u>ۍ</u>	7	

Configuration

					the second s	
- · · ·	MICT	OSCO	ne (0017		
		0300				-

Acquire

• To Configure the Microscope :

1. Close <LAS AF>

TCS SP8 💠

Configuration

2. Start <Leica AF Hardware Configurator> from : -Windows Start -> All Programs -> Leica LAS AF

t Camera Port :	Port Configuration #1
uration #1 🗘	Set Selected Port as Default
ı,	

· Camera Po

Port Config

Defau

MicroScope Type :DMI6000

Quantify

2

User Configura	ation	
LAS AF Version: 3.2.0.9 Copyright 1997 - 2013 Leica Mi	652 icrosystems CMS	GmbH
 User Path 	*	• Help Langua
System defined (default)		
User defined		
USB Drive		
Setup USB Stick		
Customized User Settings	*	Codemeter
Define current settings as custom set	tings	
		• Excel Export
		Use alway
Color Scheme		• LUT Mode
C	Dark 1 💠	Dright

0

Ó

Stage.

4

Beam Path

.....

US8 Panel

ulu

Super-Z

t,

Memory

] •

CAMServer

im =

Microscope

Laser Config

į

Objective

ø

Hardware

*

User Config

Dye Database

Curr	ently availabl	le Lasers		
▼ Adjust Lase	r Settings			*
405 Diode :	ON Standby			
WLL :	ON		o	70.00 %
Argon :	OFF O			0.00 %

WLL operated at 70% by default

Aim -0-	ICS SPIE 2 Configuration Acquire Process Quantity	File Holp -
T		
Microsope Stage		
		Chromes dat Gat
PS Dears Path		Oromos 555 GAM
		Onomia 642 GAR. Class
Later Config USB Panel		
1		C(7 DWR
Objective Super-Z		Cended (0)
*		Costruction (fire) CSRED
19.	O Hardware Settings	dtomato 8-
Hardware	Panning Line Average during Lise Acquisition	107P 109P
* =	Step Stor 3 Eine Average during Live Acquisition	
Uver Carelig Memory	Data Transfer Mode Pessibilion	HTC Have
	Direct EDirph: EDirph:	ALUOS HOECHST 33258.
Der Database CAMServer	Enhanced Direct Overflow	DP 1.4 Lucifier Velices
	Maximum Integration Time	Cyclinter Bue #-
	Online Maximum Projection during Acquisition 2 Movement	Inclusion
	Chine Maximum Projection during Acquisition	mickage 2.5 mickage 2.5
	Bidevitional XY2T Acquisition	HEGHE2
	Intege Crientation Manual Microscope Control	
	Ender Gung Acquisiton of Seres	
	LDM/Wicard Stop Behaviour	
		Propidium Excitation: Emission: [10]
		PS-OFF2 (bd) Nume (mc/hony) (bate 10/4/2013 11552 PM)
		Nhoê 3 Ful Name 1 mcheny Sapphae Cube 1 Excitation 587 Emission : 610
		STAR 4405X Comment : STAR 488
		Sufforhodamme 185 Systex Green Creators : Leice
		Tagd19 CopylgH1 TagC19

Dye database

Objective Configuration

Selected Objective :HC PL APO UVIS CS2 63x/1.20 WATER

×

▼ Objectives HCX PL APO CS 10x/0.40 DRY HC PL APO CS2 40x/1.10 WATER Empty 1x/0.00 ● HC PL APO UVIS CS2 63x/1.20 WATER HC PL APO CS2 63x/1.40 OIL HCX PL APO CS 100x/1.44 OIL

▼ Objective Attributes

i 🗐

Magnification : 6	53	Resolution Z(488nm)	200.29		
		A STATE OF A	230,20	IC Prisms :	D1;D1-P;D
Numerical Aperture : 1	1.2	Free Working Distance :	220	Technique :	
Immersion : V	WATER	Focus Depth :	0	Cond. Prism DIC :	K10;K7
Coverglass: 0),14-0,19	Focus Offset :	0	Order Number :	11506355

Experiment window

•Images are grouped into experiments, e.g., different samples

- •An experiment is a single "lif" file
- •FIJI (Image J) can open the individual images (see pdf on your disk), as can Imaris
- •right-click experiment or file names to rename them, which is helpful when deciding which file to open

•images can be directly exported in other formats (e.g., tiff)

If system crashes restart the software and any unsaved data will be reloaded from the temporary cache, this should be saved before the cache is altered

Never alter the original data and keep it available in case it is needed by reviewers, editors, or lawyers

Experiments	Ac	quisition
🗃 Experimer	Close Experim	ent
	Save Experime	ent Ctrl+S
	Save All	Ctrl+Shift+S
	Save Experime	ent (as)
	Create Collect	ion
	Delete	Del
	Rename	F2
	Сору	Ctrl+C
	Export	►
	Open in MMA	F
	Close All	

03 (11.8 MB, xy 05 (737 KB, xy)

13 (524 KB, xy) 15 (524 KB, xy)

8 (524 KB, xy)

9 (524 KB, xy)

2 (524 KB, xy

4 (8.7 MB, xyA

5 (786 KB, xyA

6 (1.0 MB, xy)

7 (1.0 MB, xy)

8 (1.0 MB, xyA

9 (786 Kill, xyA

0 (1.3 MB, xyA

11 (524 KB, xy)

5_DyeSep001 (524 KB, xy)

DyeSep001 (524 KB, xy)

2 DyeSep001 (524 KB, xy)

2_DyeSep002 (524 KB, xy)

eSepSpectral001 (524 KB,

DyeSepSpectral001 (524 KB, 1

DyeSepSpectral001 (524 KB, x

7_DyeSepSpectral001 (524 KB, :

DyeSepSpectral001 (524 KB, x

DyeSepSpectral001 (524 KB,

DyeSepSpectral001 (524 KB, x

131_DyeSep001 (524 K8, xy) 133 Raw (524 K8, xy) 133 (524 K8, xy) 135 Raw (524 K8, xy) 135 (524 K8, xy) 136 Raw (524 K8, xy) 136 Raw (524 K8, xy) 136 (524 K8, xy)

Experiment window

Opening "lif" files with imageJ/FIJI

Acquire screen

•Image parameters

•Averaging, rotation

•Pinhole (single)

•Z stacks

Monday, January 27, 14

•here for resonant scanner: 1024x1024 is max size, 8k is the only speed

Format :	1024 × 1024	0
Speed :	16 x 16	÷
the strend H .	64 x 64	OFF
lidirectional X :	128 x 128	UPP
Zoom Easters	256 x 256	1.25
Zoom Factor :	512 x 32	1.23
Galvo Sleep :	512 x 64	
Image Size :	512 x 512	Эμп
Divel Size :	1024 x 256	3 00
Piter Size :	1024 x 512	
ptical Section :	1024 x 1024	Ð

•change pixel size by zooming (in USB control panel as well) and/or formatting number of pixels--"optimize XY format" will change latter in FOV scanner

digital image rotation is possible

•single pinhole; can change from I AU default by using slider

Monday, January 27, 14

Averaging

•Confocal images are usually noisy, seen as randomly distributed single pixel signals resulting from spurious detector signals, much more prevalent in PMTs than HyDs

•Commonly reduced by averaging several images of the field of view—single random noise pixels are averaged to a low value

line or frame are alternate controls
here 16 line averaging in resonant scanner—each line is scanned 16 times before moving to the next
accumulation is the alternate (adds signal rather than averaging as in line average)

specimen can be moved using arrows here (gives fine-tuned control)
specimen can be rotated (here or on USB panel), which rotates a Konig rotator

Pinhole	▲
Unit :	AU 💠 Airy 1
Pinhole : 🔊	1.00
Emission λ [nm] : 580	53.07 µm = 1.00AU

Default pinhole is one Airy Unit

•can specify whether to display AU or physical size

•slider or USB panel control of AU size

- •Z stack menu, must use USB Z control for marking begin/end
- click arrow to move to begin, middle or end positions
- •reset to zero by clicking trash can
- •can make a stack around a current position
- •can change direction of stacking
- •number of slices
- slice spacing

Monday, January 27, 14

▼ Z-Stack: 20.14µm	61 Steps 🖈						
Begin + End +	End : 11.70 - Begin : -8.44 - Z Position [µm] :						
-Begin-	7.67 Z Size [µm] : 20.14 Z Around Current : OFF						
z - Galvo 💠	Stack Direction (2):						
Nr. of Steps	61						
z-step size	0.34						
System Optimized	•						
Galvo Flow :	OFF						
Travel Range [µm] :	500						
linear Z-Compensation							
Mode : No Compensation 💠							
Add by AOTE/EOM Gain							
Remove by Detector Gain							
Remove All	AOTI/LOW & Delector						
Move To							
Restore							

Compensation for signal drop-off within tissue

▼ t: 1 00:01:14.	385 h 00:01:14.385 h 🖈
Time Interval:	0 : 1 : 14 : 385
Minimize	
Acquire Until St	opped
O Duration	0:0:1:14:385
Stacks	1 \$

Time-lapse set-up

•minimize: no delay between stacks; when not ticked the time interval can be set to be longer than the time needed to acquire a stack (dark interval must be added to the acquisition time to give the interval)

- •...until stopped: flexible--can stop when appropriate
- •duration: a set total time duration
- •stacks: a set number of stacks

For high speed acquisition rates: Use bidirectional scan and calibrate "phase" so that forward and reverse scan are synchronized. Also minimize the number of acquired pixels.

- mark positiondelete position
- •delete all positions
- •tiling/montage menu

easiest is to mark positions for opposing corners--software fills in the number of images
easiest way to identify corners is by using the scope's epifluorescence

•zoom is to show the montage layout optimally

moves to indicated position
 merges montage after acquisition is completed

Monday, January 27, 14

Monday, January 27, 14

Acquire

•Laser line selection (here: white light laser) and power level

objective,
 access to
 parameters

•Sliding mirror selection of detection bandpass

•PMT and Hyd detectors, five

Lasers

• The goal is to use a laser line that is optimal for the fluorophore (emits at a wavelength close to the excitation maximum for the fluorophore).

• Due to phototoxic effects, laser light reaching the specimen must be kept to a minimum. When lasers are powered on, they emit at their full output energy. This output is then sent through an AOTF modulator that gives the user control over the amount of that laser light reaching the sample. This can be measured by a power meter reading at the back focal plane of the objective. The slider gives a % transmission value.

• Kasha's rule: fluorophore emission will the be same regardless of how the molecule is excited.

Goal is to keep the slider as much as possible to the bottom.

> The 405 and WLL are lower power than the argon laser--use the argon at a very low power setting (it is useful for FRAP).

Monday, January 27, 14

Using WLL excitation (after laser is turned on in configuration window)

12	3 4 5	6 7 8 ON									 80 MHz 💠	Constant	Percentage 븆
%	2.00	3.78											
		514 2 0						>62					
	deg -0							^			×		
	6	AOBS Cor	nfigura	atio	n						_		
	▼ AOBS												
Specimen			488 nm	514 nm	582 nm	0 nm	0 nm	0 nm	0 nm	0 nm			
	ч. Т	Fluorescence :	\circ	۲	۲	۲	۲	۲	۲	۲			
		Reflection :	۲	\bigcirc	\bigcirc		0			0			
350.0											700.0		750.0
					-								

"Beam path" in "configuration" or in "acquisition": shows AOBS settings (fluorescence blocks indicated line, reflection passes it)

Monday, January 27, 14

- database emission curve display option
- detection mode (standard, Bright R, photon counting)*
 gating mode (only for WLL)

- *
- •standard: gain control linear response
- BrightR: non-linear gain control response--gamma adjust
 photon counting: each emission photon reaching the detector results in an intensity-count (1:1) in the image (statistically accessible)

•BF: brightfield

- •DIC: true DIC (differential interference contrast, more tomorrow)
- •DIC-Pol: polarized light

When transmitted light (PMT) detector is "on" a variety of imaging modes are available

Monday, January 27, 14

📴 📐 🛱 📇 🎤 🕂 🔍 🍳 🔀 1084 %

•Each channel is given a number and also a merged channel is selectable

山

LUT (look-up table)

•LUT three sequential click steps: pseudocolor, dynamic range, white. Dynamic range: green is black value, blue is saturated value.

• Double click a given channel and it will be fully displayed. Click a channel for controlling its gain on the USB panel.

0:0:0:0:

Channel display

рх Image036 x=512 y=512 (524 KB) Size: 77.88 µm x 77.88 µm

E () [] [] [] [] [] []

255 255 Q

Minimizing bleed-through by sequential acquisition

Scan one

Scan two

Basic technique is to minimize bleed-through by adjusting S:N so that signal only occurs in the correct channel, set by using singly-stained controls. Then use the same acquisition S:N settings for the experiment sequence scan. In the SP-8 the detection sliders must not be different for the two scans. By scanning sequentially a given scan is therefore optimized for its fluorophore and lack of bleed into the other channel.

Adjusting Signal:Noise in the SP-8—click LUT button one time to get the dynamic range LUT

<u>Green</u>: pixels with an intensity value of zero=background should have this value <u>Blue</u>: pixels with the maximum value (saturated)= avoid, lacks structure information <u>Warm colors</u>: higher end of the intensity scale= ideal is to increase signal without getting into the blue range

Uncorrected

Green, black level, is adjusted by "offset" in USB panel.

Intensity not high enough? I --increase gain and averaging 2--increase pinhole at expense of z axis resolution 3--increase laser power

Reduce intensity?

I--pinhole= I AU2--reduce laser power3--reduce gain

Corrected

Effect of changing pinhole size

One Airy Unit

Three Airy Units

- Increases the optical section thickness = samples more of the emitted photons, more signal
- More signal: opportunity to reduce laser power and therefore reduce photodamage
- Here: better sampling of the cortical ER, which is a curved sheet that is best seen with the increased depth provided by the bigger pinhole
- Thicker section means less Z axis resolution

Pixel size: satisfying the Nyquist criterion

FIGURE 4.11. Nyquist sampling of an image of two points separated by the Rayleigh resolution.

The optical (Rayleigh) resolution must be sub-sampled by pixels in order to define the signal location accurately

- ~2.3 X is typical
- E.g., if optical resolution is ~250 nm, then pixel size should be 250/2.3, or ~ 108 nm
- Pixels smaller than this make for oversampling, which subjects the specimen to excessive photodamage
- Pixel sizes considerably smaller than this do make for a better looking image, if this can be afforded

Pixel size adjustment on the SP-8

Format :	1024 x 1024 👔 🗘
Speed :	16 x 16 🛊
at the strength of	64 x 64
Bidirectional X :	128 x 128
	256 x 256
Zoom Factor :	512 x 32
Galvo, teep :	512 x 64
Image Size :	512 x 512) µm
Direct 6 into 1	1024 x 256
Pixel 5 Ze :	1024 x 512
Optical Section :	1024 x 1024 🗢

•Select larger image pixel dimensions: more pixels in the image=higher pixel resolution

- •"Zoom" here or on the USB panel keeps the same number of pixels, in a smaller specimen region
- "Optimize XY format" will adjust them according to the Nyquist

		The second se			
xperiments ProcessTools Batch Deconvolution			1		
▼ Edit					
Сгор					
Resize					
Combine					
Shading					
Merge					
Mosaic Merge					
Image Alignment					
Projection					
▼ Adjust					
Sharpness					
Phase					
Colors					
HSL/HSV Colors					
Background					
Baseline					
 Deconvolution 					
2D Deconvolution					
3D Deconvolution					
STED/Confocal Deconvolution					
Generate 2D STED/Confocal PSF					
 Noise Reduction 					
Median					
Blur					
 Segmentation 					
Thresholding					
Morphological Filters			Prod	soss mon	
Seeding			1100		lus
 Dye Separation 		•these c	an be done	using the off-	line compute
Automatic Dye Separation	1				inte compute
Channel Dye Separation					
Spectral Dye Separation	ž.				
▼ Topological	Î				
Topological Filter					
Topological 3D View					
 Excitation Emission Scans 					
Excitation / Emission Contour Plot					